Theoretical Aspects for Testing Impedance Data

Basics of the Kramers-Kronig- and the Z-Hit algorithms

Lecture at the Kronach Impedance Days 2015
Dr. Werner Strunz
Motivation

The entire process of measurement, interpretation and analysis of EIS data usually aims toward winning a set of these characteristic parameters.

We want to see results like:

- Flatband potential = -0.301 ± 0.02 V
- Effective gas diffusion length = 0.02 ± 0.001 m
- Corrosion rate = 0.03 ± 0.01 mol\cdotm$^{-2}\cdot$a$^{-1}$

The importance of an information grows with the accuracy of the results.

An unknown uncertainty invalidates the results.
Problems of Daily Life

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data

Reliable or not reliable
that's the question
The most important uncertainty contributions:

Uncertainties Caused by the Analysis Procedure

- **Imperfectness of the modeling:** Idealizing theory, approximating theory, ambiguous impedance network representations, unconsidered spectral contributions.

- **Imperfectness of the fitting procedure:** Sensitivity on the starting parameter values, sticking on local minima, early fitting abort.

Both the quality of the experimental data as well as the uncertainties coming from the analysis procedure affect the numeric accuracy of the finally output parameters!

Most EIS simulation and fitting programs consider only the fitting quality but are unable to take the quality of the experimental data into account unrealistic parameter accuracy estimation.

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
EIS-Measurement at a Single Frequency

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
The basics of Weighted Harmonics Autocorrelation

Monochromatic Oversampling

Excitation-signal: sinusoidal → One sharp frequency line

![Graph of excitation signal](image1)

Response-signal under ideal conditions: as well exactly one line in the spectrum

![Graph of response signal](image2)
Monochromatic Oversampling

Under realistic conditions (in the presence of any disturbance) -

- the response signal contains „noise“!

The additional lines, appearing in the frequency spectrum can be unambiguously assigned to unwanted distortions!
The appearance of isolated frequency lines does not mean, that the accuracy is impaired.

Isolated frequency lines appear, if a distortion component matches exactly a harmonic of the signal.

The uncompensated residuals vanish in the case of periodicity. In that case the Fourier transform filter is able to remove the distortion components perfectly.
High frequencies contribute less to errors than low frequencies.

Uncertainty estimation based on harmonic analysis.

Distortion residual at an interference frequency of $F_{\text{signal}} \times 3.5$

Smaller distortion residual at an interference frequency of $F_{\text{signal}} \times 7.5$

Blue: Signal Red: Interference
Results of process simulations

Digital simulation and calibration of the „weighted harmonics autocorrelation” procedure

Sine-shaped distortion signal with comparable amplitude under variation of the frequency ratio. The time window is one period of the signal frequency.

Actual deviation (blue) vs. predicted deviation provided by the weighted harmonics autocorrelation method (red).

The estimation correlates with the real deviation, except for distortion frequencies close to or identical with the signal frequency. This is a fundamental problem.
Weighted Harmonics Autocorrelation (WHA)

On-line error determination and processing for electrochemical impedance spectroscopy measurement data based on weighted harmonics autocorrelation
C. A. Schiller, R. Kaus; Bulgarian Chemical Communications, Volume 41, Number 2 (pp. 192–198) 2009

Consistent Discussion of the Uncertainty of Physical Parameters Evaluated by EIS, Based on an Automatic Measurement Error Determination
From Measurement to Parameters

Raw Data $Z_{\omega_i}^*, H_{\omega_i,o}$

WHA $Z_{\omega_i}^*, \Delta_{\omega_i,o}$

original data

smoothed data

ZHIT data

generally not equidistant in log(f)

NOISE SPIKES equidistant in log(f)

DRIFT equidistant in log(f)

CNLRS fitter

model $P_1, P_2, ..., P_n$
The Validation of Experimental Impedance Data

Detection and reconstruction (!!) of non-steady and/or disturbed systems

(see Wikipedia “ZHIT“ (currently:de))
Motivation

Development and/or improvement of important technical products

- Fuel cells
- Batteries
- Rechargeable batteries
- Solar cells
- Coatings

NON-STATIONARY CONDITIONS

(may) result in

NON-STATIONARY SPECTRA
Spectrum of a Fuel Cell Under Load (I)

Reliable detection of artifacts

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
EIS-Principle at a Single Frequency

Excitation at constant frequency

functions $E(t)$ & $I(t)$

- How to validate EIS-spectra?
- What's the specific property?

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
The Kramers-Kronig Relations

\[
\text{Re}\{H(\omega_0)\} = \text{Re}\{H(0)\} - \frac{2}{\pi} \text{PV} \int_0^\infty \frac{\omega \text{Im}\{H(\omega)\}}{\omega^2 - \omega_0^2} d\omega
\]

\[
\text{Im}\{H(\omega_0)\} = \frac{2}{\pi} \omega_0 \text{PV} \int_0^\infty \frac{\text{Re}\{H(\omega)\}}{\omega^2 - \omega_0^2} d\omega
\]

BUT WHERE ARE THE PROBLEMS?

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Mathematical Relations (Real-Valued Quantity)

\[y(t) = e^{-\lambda t} \]

\[y(t) = a \cdot t^2 \]

\[y(t) = \sin(\omega \cdot t) \]

Unequivocal relationship between dependent and independent variables

=> \(y(t) \) is determined / measured with a distinct accuracy
Mathematical Relations (EIS) (Complex-Valued Quantity)

- Z & ϕ: measured independently with different accuracy and sensitivity

- Z & ϕ: strongly correlated (in theory) – **BUT IN PRACTICE?**
The Sensitivity of Objects (Z & φ)

- Excellent Examples: Sensors!

- Temperature Dependent Resistor (NTC, PTC)
 Pt 100, Pt 1000, KTY 81, …

- Light Dependent Resistor (LDR)

- Magnetic Dependent Resistor (MDR)

- Humidity Dependent Capacity

- …..
The Course of Phase and Impedance when Heating NTC/PTC

$Z \ & \ \phi$: Phase ϕ is more stable than impedance Z

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
The Z-HIT Approximation
(evaluation of impedance modulus from the phase angle)

\[\ln |H(\omega_0)| \approx \text{const.} + \frac{2}{\pi} \int_{\omega_s}^{\omega_0} \varphi(\omega) d \ln \omega + \gamma \cdot \frac{d \varphi(\omega_0)}{d \ln \omega} \]

- Detection of artifacts
- Detection of instationarities (drift)
- Reconstruction of causal spectra

=> Reliable interpretation of spectra

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Deduction of the Z-HIT (IV):
- Relationship of elementary two-poles

\[
H(j\omega) = \text{const } (j\omega)^\alpha
\]

\[
\frac{d \ln |H(\omega)|}{d \ln \omega} = \alpha
\]

\[
\varphi = \frac{\pi}{2} \cdot \alpha
\]

\[
Z' = \alpha
\]
Deduction of the Z-HIT (V) - refinement

Randle circuit

[D]

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
The Z-HIT Approximation

- frequency boundaries

\[\ln|H(\omega_0)| \approx \text{const.} + \frac{2}{\pi} \int_{\omega_S}^{\omega_0} \varphi(\omega) d \ln \omega + \gamma \cdot \frac{d\varphi(\omega_0)}{d\ln \omega} \]

Considering Kramers Kronig relations

\[\Im\{H(\omega_0)\} = \frac{2}{\pi} \omega_0 \ PV \int_{0}^{\infty} \frac{\Re\{H(\omega)\}}{\omega^2 - \omega_0^2} d\omega \]
The Limited Bandwidth Problem (I)

- Simulation of a coating during water up-take
- Measured frequency range 100 KHz – 50 mHz
 - $\omega \to 0 : ?$
 - $\omega \to \infty : ?$

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Implementation of the Z-HIT Algorithm in the THALES Analysis Software Package

1) The experimental data are filtered by a smoothing algorithm. The result is a set of continuous samples equidistant in log f.

2) The integral term is calculated by numerical integration.

3) The first derivative is taken from the smoothing function.

4) The integration constant is determined by a least squares fit.

\[
\ln |H(\omega_0)| \approx \frac{2}{\pi} \int_{\omega_s}^{\omega_0} \varphi(\omega) d \ln \omega + \gamma \cdot \frac{d \varphi(\omega_0)}{d \ln \omega} + \text{const.}
\]
Applications

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Application
Spectrum of a fuel cell under load

1. Z-HIT
2. FIT

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Application
Fuel Cell under CO Poisoning (I)

Series measurement ~ 10 minutes per spectrum

- Strong influence
- Rapid changes

Relaxation impedance as a model for the deactivation mechanism of fuel cells due to CO poisoning

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Application
Fuel Cell under CO Poisoning (II)

Series measurement ~ 10 minutes per spectrum

- Strong influence
- Rapid changes

Relaxation impedance as a model for the deactivation mechanism of fuel cells due to CO poisoning
Application
Fuel Cell under CO Poisoning (II)

Raw data

Refined data

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Application

Water Uptake of Coatings (I)

Series measurement ~ 20 minutes / spectrum

=> Water uptake: a very slow process
Application
Water Uptake of Coatings (II)

- Only the lowest frequencies are affected
- Only at the earliest spectra

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Water Uptake - Waterborne Coating

Series measurement

With kind permission of U. Christ, Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Water Uptake - Waterborne Coating

With kind permission of U. Christ, Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Battery under Load - Mutual Inductance & Drift

High-frequency Data (inductance)

With kind permission of R. Gross, bno-consult, Würzburg

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Lithium-Ironphosphatate

Check for Drift

AND (if possible)

Elimination

Part of „daily live“

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Estimate of Accuracy (I)

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data

\[|Z| / \Omega \]

|frequency / Hz\rightarrow|

\[|\text{phase}| / ^\circ \]

\[Z\text{-HIT} \]

\[\alpha = 1 \]

\[\alpha = 0.5 \]
Estimate of Accuracy (II)

\[\text{rel. Error} = \left(\frac{Z_{\text{SIM}} - Z_{\text{HIT}}}{Z_{\text{SIM}}} \right) \cdot 100 \]

|Z| / Ω | Z-HIT |
|---|---|
|phase| /°|

\[
\alpha = 1
\]

\[
\alpha = 0.5
\]

Kronach Impedance Days 2015 – Z-HIT: The validation of experimental impedance data
Conclusion

Z-HIT Approximation

\[\ln|H(\omega_0)| \approx \text{const.} + \frac{2}{\pi} \int_{\omega_s}^{\omega_0} \varphi(\omega) d\ln \omega + \gamma \cdot \frac{d\varphi(\omega_o)}{d\ln \omega} \]

Local relationship between impedance and phase

=> Not affected by the limited bandwidth problem

=> Reliable **detection** of artifacts and instationarities (drift)

=> **Reconstruction (!!)** of causal spectra

=> Reliable interpretation of spectra
Thank you for your attention