

ZENNIUM PRO

THE ALL-PURPOSE POTENTIOSTAT

Application Fields

Zahner potentiostats are designed as a modular concept, giving users the **freedom to customize** their potentiostat according to their needs.

High Power Applications

Photoelectrochemistry / Photovoltaics

Electrochemistry

Addon Cards

Plug-and-play cards introduce additional input/control signals to the **ZENNIUM**

potentiostat.

- → Additional analog & digital input/output channels for the ZENNIUM potentiostat
- → Allows process automatization via Thales scripting or remote integration
- → Analog channels provide 16-bit resolution at a range of ±10 V

- → For detailed stack characterization
- → Enable parallel measurement of each cell in a stacked system (batteries, fuel & electrolyzer cell stacks)
- → Simultaneous half-cell characterization for reference electrode setups

- → Two temperature recording channels
- → Two configurable input-voltage channels for recording data from external devices like a pH meter, pressure chamber, etc., during electrochemical measurements

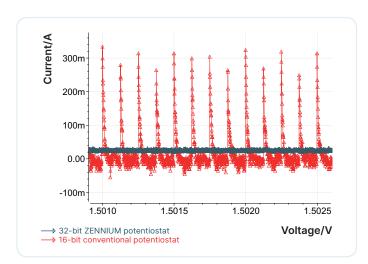
Extensions For Power Applications

Extend your **ZENNIUM potentiostat** for high quality impedance at high currents.

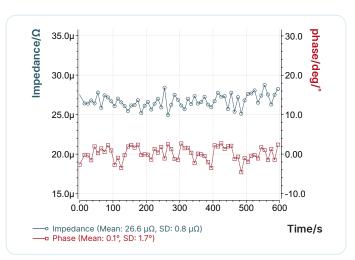
Extension For Medium Power Applications

- → Power potentiostats (PP) with power up to 200 W
- → Current up to ±40 A, voltage up to ±20 V
- → Remote integration possible via Python and C++

FUNCTIONALITY OF YOUR POTENTIOSTAT 66



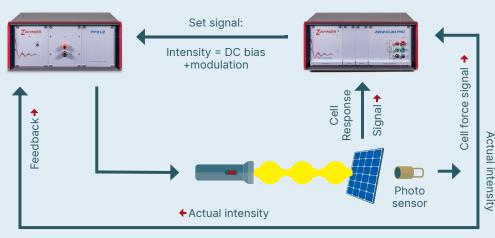
Extension For High Power Applications


- → Electronic load (EL) system with power up to 68 kW
- → Current up to ±680 A, voltage up to ±100 V
- → Remote integration possible via Python and C++

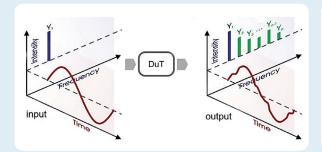
Main Specifications

- → EIS frequency range 10 µHz 8 MHz
- → 32-bit DC and 24-bit AC resolution
- → ±5 V / ±15 V voltage range
- → ±3 A over 12 current ranges
- → Online data processing for outstanding EIS

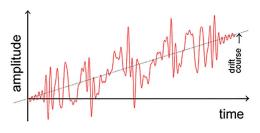
Slow CV scans with a scan rate of 10 μ V/s on a highly capacitive system with the ZENNIUM potentiostat (32-bit DAC resolution) and a conventional potentiostat (16-bit DAC resolution).



Single frequency (1 Hz), single period impedance measurements on a 25 $\mu\Omega$ resistor vs. time. The measurement is carried out with 1 A amplitude.

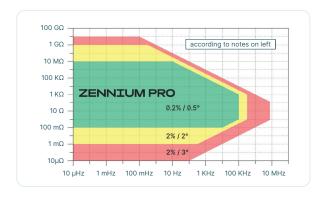

77 THE HIGH-END POTENTIOSTAT 66

Our Strengths


We offer diverse extension possibilities for various electrochemical, photoelectrochemical/photovoltaic applications.

CIMPS: Extend the potentiostat for use in the field of photoelectrochemistry/photovoltaics. The CIMPS system with its extensions support IMPS/IMVS, IPCE, spectroelectrochemistry measurements and many more.

NFRA: ZENNIUM potentiostats can measure harmonics during the impedance measurement, making it capable to carry out non-linear frequency response analysis.



IM-Sine: ZENNIUM potentiostats can carry out intelligent multi-sine EIS measurements, significantly decreasing the total measurement time.

Accuracy Contour Plot

- \rightarrow Z > 0.1 Ω : potentiostatic mode, amplitude 10 mV
- → $Z > 1 \text{ M}\Omega$: potentiostatic mode, amplitude 50 mV, shielded
- → Z < 0.1 Ω: galvanostatic mode, amplitude 100 mA
- ightarrow Z < 0.01 Ω : galvanostatic mode, amplitude 1 A
- → Without DC bias voltage/current
- → Specified at the BNC terminals

Specifications

Potentiostatic modes potentiostatic, galvanostatic, pseudo-galvanostatic, rest potential, ZRA, off

ADC resolution 32 k

Function generator digital (analog: option ADF for scan rates up to 10 kV/s)

Harmonic reject > 60 dB @ ½ full scale
Cell connection 2-, 3-, 4-terminal kelvin
Ground reference grounded, floating

Frequency generator & analyzer	Low range	High range
EIS frequency range	10 µHz to 8 MHz	3 7 37
AC amplitude	0 to 2 V, 24 bit resolution	0 to 6 V, 24 bit resolution
Accuracy	< 0.0025%	, , , , , , , , , , , , , , , , , , , ,
Resolution	0.0025%, 10,000 steps/decade	

Output potentiostatic	Low range	High range
Controlled voltage	±5 V	±15 V
Resolution	2.5 nV	7.5 nV
Accuracy	±100 μV ± 10 ppm of reading	±500 μV ± 10 ppm of reading
Integral nonlinearity	typ. 2 ppm, max. 4 ppm	typ. 6 ppm, max. 12 ppm
Compliance voltage	±14 V	±28 V
Bandwidth	DC to 10 MHz @ 33 Ω load	
IR compensation	auto AC impedance technique, range 0 to 10 M Ω , resolution 0.012%	
Small signal rise time	150 ns to 200 us in 5 steps, automatic selection	

Output galvanostatic

Slew rate

Phase shift

Controlled current ±3 A

Current range ±1.9 nA to ±3 A in 12 current ranges

15 MV/s

10° @ 500 kHz

Resolution 32 bit \pm 0.2 ppb of FS

Accuracy $\pm 0.05\%$ of reading $\pm 0.02\%$ of FS, $\geq 1~\mu A$ to 100 mA $\pm 0.2\%$ of reading $\pm 0.1\%$ of FS, $< 1~\mu A$ or > 100 mA

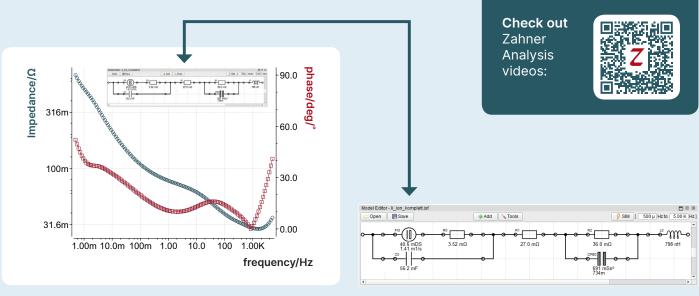
Input	Low range	High range
Max. input voltage	±5.5 V	±16 V
Voltage resolution	2.5 nV	7.5 nV
Voltage accuracy	±100 μV ± 10 ppm of reading	±100 μV ± 10 ppm of reading
DC current resolution	2 aA (32 bit)	
DC current accuracy	±0.05% of reading ± 0.02% of FS @ 1 μA 100 mA	
	±0.5% of reading ± 0.2% of FS @ 100 mA 3 A	
	±0.5% of reading ± 0.2% of FS @ 10 nA 1 µA	
	±0.5% of reading ± 125 fA @ < 1 nA (HiZ-Probe)	
Input impedance	> 10 T Ω ±5 pF typ. (Main) / > 1000 T Ω ±1 pF typ. (HiZ-Probe)	
Input leakage current	< ±200 fA typ., < ±2 pA max., / < ±10 fA typ. (HiZ-Probe)	
Impedance range	1 mΩ to 10 GΩ / 2% (Main)	
	100 mΩ to 10 MΩ / 0.2%	
	100 m Ω to 100 G Ω / 2% (HiZ-Probe)	
	10 μΩ to 1 GΩ / 2% (Gal)	
	1 mΩ to 10 MΩ / 0.2%	
Common mode rejection	> 86 dB @ 10 µHz to 100 kHz	
	> 66 dB @ 100 kHz to 8 MHz	
Input channel phase-tracking	±0.05° @ 10 μHz to 100 kHz	
acc.	±0.125° @ 100 kHz to 8 MHz	
Equivalent effective input noise	1 μV rms / 100 fA rms @ 1 mHz to 10 Hz	

General

PC interface USB 2.0

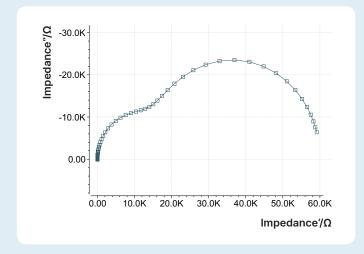
Dimensions / Weight $160 \times 364 \times 376 \text{ mm}^3 / 11.4 \text{ kg}$ Power supply 100/115/230 VAC, 50/60 Hz

Ambient temperature / humidity +10 °C to +30 °C / < 60% without derating

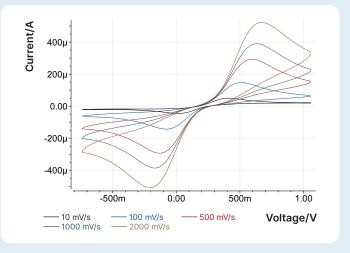

Zahner Analysis

EIS fitting

- → Create equivalent electrical circuits
- → Fit impedance spectra
 - > Single fit > Series fit
- → ZHIT tool
- → Significance plot
- → Fitting accessible via API


Other techniques

- → Cyclic voltammetry
 - > Peak determination > Charge integration
- → Tafel slope measurements
- → Butler-Volmer measurements
- → Analysis of photoelectrochemical measurements



Impedance spectrum (Bode plot) of a battery with the equivalent electrical circuit

Create your own equivalent electric circuit for EIS fitting

Impedance spectrum (Nyquist plot) with two time constants

CV scans measured at different scan speeds

ZHIT

The Zahner Analysis software features the unique **ZHIT** tool, which helps identifying artifacts in impedance spectra and allows reconstruction of artifact-free impedance spectra for fitting.

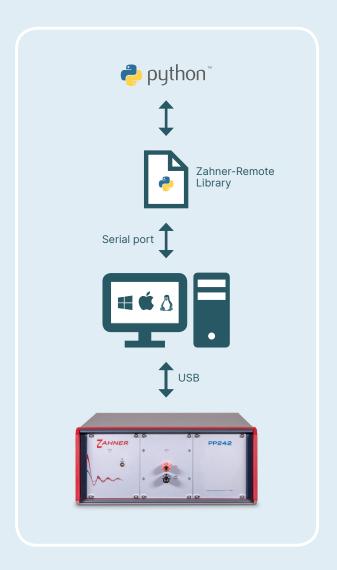
Significance Plot

Zahner Analysis software features an exclusive tool called the **significance plot**, which evaluates the frequency-dependent significance of equivalent circuit elements in the fitting.

Remote Integration Possible With:

- → Python
- → C++
- → TCP/IP

JJ FROM REMOTE MEASUREMENT TO REMOTE DATA ANALYSIS


Automate Your Electrochemistry

Integrate our potentiostats into your test bench for seamless operation. Zahner offers flexible remote control of the devices with ease. By integrating multiple potentiostats into a test bench, the user can create a high-quality multichannel system. Remote integration is possible via Python and C++.

EPC

Check different connection schemes:

