Expansions for the .
Logarithmic Kramers—Kronig Relations
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Abstract

The log transfer function of a time-invariant linear system which is causal and
minimum phase satisfies relations of the Kramers-Kronig type which allow, for
example, to calculate its real part U from its imaginary part V. A remarkably
simple approximation to this relation of the form

dV (w)

2 T
Ulw) = ;_-/.0 Viz)dlogx + aglogw + const.

was proposed by Gohr and Schiller in 1977 for application in electrical impedance
spectroscopy. In this note an expansion of U in terms of V will be established
which may be considered as a mathematical justification for this approximation.
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1 Introduction: Kramers-Kronig relations

Consider a time-invariant linear system which transforms an incoming signal f(¢) into a
signal ¢(t) given by ¢(t) = [Z., k(t—s) f(s) ds. Suppose the filter £ is causal, i.e. k(¢) =0
for t < 0, and square-integrable. Then the transfer function k(w) = [;°e™!k(t)dt is
a Hardy function (cf. Dym and McKean (1972), sections 3.4, 3.5): it is analytic in the

upper half plane C. = {w € C: Imw > 0} and satisfies

sup k(a +1b)* da < . (1.1)

6>0 —CC

The analyticity of the transfer function implies strong relations between its real and
imaginary part even on the boundary of C,, the real line R. These relations, known
in system theory and physics as the Kramers—-Kronig or dispersion relations, basically
say that the real and imaginary parts of k are Hilbert transforms of each other. For
real-valued £ thev may be written in the form
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with PV/[ denoting the Cauchy principal value and w € R.

If the transfer function also is “minimum phase”, that is, has no root in C_, then the log
transfer function, too, is analytic in C, and should satisty analogous relations. Let

U(w) = log |k(w)| = Re log k(w), V(w) = arg k(w) = Im log k(w). (1.3)

The Kramers—-Kronig type relations for the log transfer function logfc = U +1V, to be
called the logarithmic Kramers-Kronaig relations, read as follows.

PV/ xz—wz (1.4)

PV[ 15
(2 _wg dz. (1.5)

The first relation formally is the same as in (1.2) but the second must be different. due to
problems with the convergence of the relevant integral. The validity of the relations can
be established under the following set of assumptions (A,), which depend on an integer
g > 0. The argument will be sketched in the appendix.

V(w)

U(w) — U(0)

ASSUMPTIONS (A;). k is a real-valued function on R vanishing for ¢ < 0 and

such that [°¢91k(t)|dt < co. Its Fourier transform k has no zero in the closed upper
half-plane C, and satisfies the following conditions.

F}im R*':“‘”/ log k(Re™®)|dp = O; (1.6)
~00 0

* |log k()]
/m T dr < o<, 11.7)

The focus in this paper will be on the relation (1.5). In section 2 we establish an expansion
for the right~hand side of (1.5) which may be viewed as a mathematical justification for
the approximation

dV (w)
d log w

U(w) =~ —%/ﬂ Viz)dlogr + « + const. (1.8)
Gohr and Schiller (1977) introduced this approximation in connection with electrical
impedance spectroscopy on the basis of an important special case where it 1s exact, and
of empirical evidence. In an ideal electrical device the impedance modulus - the real
part of the log transfer function - should be related to the phase — the imaginary part -
through (1.5). The approximation thus may be (and is) used for quality control purposes.
Section 3 contains a brief discussion of the reverse relation (1.4).

2 An expansion for (1.5)

[n the sequel the k-th derivative of V' (x) with respect to the variable logz evaluated
at t € R will be denoted by Vi(¢). It may be defined recursively starting with V7(¢) =
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fi’;(ti = tV'(t) for k = 1. Notice that U and V' are even and odd tunctions on R,
g . . .

respectively. In particular, V(0) = 0. Therefore it suffices to consider the physically
meaningful case of positive frequencies w > 0 only. Finally, {(s) = > ,>;n™° denotes

the Riemann { function.

Proposition 2.1 Assume (A;), and suppose V is n > 2 times continuously differen-
tiable and satisfies lim, o V/(1/t)t? = 0. Then for every w > 0

—g(U(w) —U(0)) = - /:U Viz)dlogz + nz—: Vi(w) C(k+1) 27% + Ry(w). (2.1)

k=1, k odd

The remainder term 1s given by

R,(w) = /ﬂl (Volw/r) — (=1)"Va(wr)) an_o(r) %f- where (2.2)
r r\k
ou(r) = /U (loi!t) ( ;log(lﬂtﬁ))% k>0, 0<r<1). (23
The following estimates hold:
Ra(w)l < 27 (14 5C(m) sup |Va(z)]. (2.4
00 cl oG
[TIR@) T < 2 sem) [T S 25)

PROOF. Let n > 1 and w > 0 be hixed. The proof is based on (1.5), which 1s valid
under (A,) (see Appendix), and an analysis of the expression
Alw) = (U( )= U(0)) + / Viz a’:z: (2.6)
T
d:r

mw/ 2dx+/V
2 —w T

In (2.6) we have dropped the PV sign, and we will stick to this from now on. Changing
variables and then breaking up the first integral into two we get

t)dt dt
Alw) = / (tzw + / Viwt)— t (27)

1 dt o Vi{wt) dt
- [ronfie i)t
fven (v 7=) T - [ s

L ¢ L Vi(w/s) sds
= Viwt at
/0 (W) 779+ |, (52— 1) 52
L £
= Viw/t) — V{wt .
[ (Vwft) = V(wt) ——— d
This representation of A will now be used to derive the desired expansion. Observing
To Th—i l L \n
/ / dlogx, - --dlogx; = (Og;'”) (o > 0) (2.8)
w w TL!




(the integral is understood to extend over all (z;,...,z,;) suchthat w <z, < ... <7 <

zo if w < z¢, or such that w > z, > ... > 1y > 7o if w > zp) one easily verifies by
induction that

. no) (log i&)k Zo
Vizg) — V(w) = > Vi(w) 7 | / Kn(w,z,)dlogx, . (2.9)
. . w
where
K (w z) = // " Vi(z,) dlogz, - - - dlog T (2.10)
2 (log 2-)"~*
— n\-tn ""'__""""_"_dl n -
/w Val(zn) TR 0g T
Therefore
o tdit 1 t dt
Aw) = [ V) -Vw) — - [ (V) -Vw) = (211)
0 1 —¢ 0 1 -1
. I w/t wt tdt
- 3 v g [ (o 0 - tos 2] 2+ Ratw
— L Jo 1 —t¢
= —2 tdt
— Z Vi(w) — /(log )itc + R,(w)
k=1, k odd k. Jo 1 -t
with a remainder term given by R, = R - R, , where
L/t ¢ di
Riw) = [ [ Ka(w,zi)dloga —, (2.12)
wi f
Ro(w) = / / (w, 1) dlog x, 7 dtﬁ‘ (2.13)
The coefficients ¢, = fo (logt)* tdfz can be evaluated using the wellknown formula
e Isﬁl
——dx = T . .
| S—=dz = T(s)¢(s) (2.14)
Substituting ¢t = e~%/? we find
(“1/2)k /m z" ka—k
— dr = (- +1).
Ck L 1 et _ ] = (=-1)"27"C(k + 1)

Therefore, the expansion (2.1) is established up to the analysis of the remainder term.
Consider R7. Partial integration gives

L rw/t d tdt 1 i di
Ri(w) = [ [7 Kalw,2) 5 25 = [ Katw,w/t) (5 log(1 - ) 5

w Ty l—tg

The boundary terms do vanish. This can be proved by going back to (2.9) - which

allows us to rewrite the integral [*/* K,(w,z) g—?— as a linear combination of the terms
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V{w/t) - V(w) and (log(1/t))* (1 < k < n) - and using the assumptions about V. With
(2.10) we then obtain

Ry (w)

]

w (n—2)! s

[ vatwrn) [ (l(igf);_: (-5 1o1-)) 7
— /: Va(w/r) on_a(r) d?r_

[ e BT (Ge-e) § e
d

The other remainder term can be treated similarly. One obtains

dr

r

R_(w) = / Voilwr) op_a(r) —

and together with (2.15) this proves (2.2).
We now estimate the total mass of the measure oy (r) .

1 dr (log r — logt 1 5.\ dl
/0 Tr(T) — / / dlogr (—5 log(l — ¢ ))
logt)thI ( ] )2 dt
/0 e \ g osl - )) N

L (2 logs)ft! 1 ds
- ——~ log(1 — ) —
/o (k + 1)! ( 2 ogll — ) 25

|

1

|

Applying the inequality —log(l —s) < s{l+ ;i,- —). 0 < s <1, and substituting s = e™*

we obtain the desired estimate,
o (k+1) s t—1

/lmc('r‘) ar < 27k+3) / log
0 T
K+1 =T d.’L‘

< 9-(k+3) / o= Jp 4 o—(k+4) /m T
= : (k+ ST o it 1) er —1

1
< 9 (k+3) (1 + 5 ((k + 2)) .

k-H

L (log L)E+1
ds + 2-(k+d / log ) S (9.16)

The pointwise error bound (2.4) immediately follows from (2.2) and (2.16). The integral
bound {2.5), finally, follows from

[TIRN < [T [ Watw/r)l+ Vatwn))) ona(r) T 2

[, ranzw/s?fd—“/ / () neals/) = 22
[ ] onalwss dw{V - [ oncals/w --|V()|d—3
zﬁmwm%ﬁﬁmm;.

d
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Remark 2.1 The quality of an approximation obtained by ignoring the remainder term
in (2.1) depends on the behaviour of the derivatives of V' with respect to logw. If these
do not increase too fast with n, the exponential factor 27" will make the approximation
effective for large enough n. For fixed n the remainder term is not negligible, however,
and the numeric value of the coefficients ((k + 1) 27* should not be taken too seriously.
Optimizing the coefficients, for fixed n, with respect to a suitable error criterion may
produce better results in some cases.

Remark 2.2 Filters in the form of a power or an exponential law represent two simple

examples of particular interest. ﬂ

The transfer function corresponding to k(t) = t*7%, t > 0, is k{w) = I'(a)/(~w)*. Our

assumptions are not satisfied in this case. Nevertheless, one may note that logk(w) =
T

log ['(a) — o log|w| — i (arg(w) — Z), so that for real w (where arg{w) =0 or =«

according to w > 0 or w < 0, respectively),

T

U(w) = logl'(e) — a log |w], Viw) =« gsign(w)_

Apart from the jump at w = 0 the phase V' 1is constant, and for any two positive ire-
quencies w, wy one has U(w) — U(wy) = —2 Jw, V(s)dlogs. Thus, the approximation
(1.8} is valid exactly in this case, except for the singularity at zero.

The log transfer function of an exponential filter k(t) = A exp(—At). t > 0, is logk(w) =
—log(l — %), so its real and imaginary parts are given by U(w) = —; log(l + (%)*) and
V{w) = arctan{y ), respectively.

[n Figure 1 the function U and the approximations of the orders 1, 3, and 5 are piotted
against the frequency w, for four different values of the scaling parameter b. Note that

for b = 25, k£ 1s almost an delta - function.

Remark 2.3 The density ox(r)/r is convex on (0,1) for every & > 0, and is stretched
to nearly a straight line, op(r)/r =~ r ox(1), for large k. This can be seen from the Taylor
expansion ot the logarithm,

l(logi)k 1 5 o\ dS <. 1™ ¢l {log ;)k -
op(r) = /U (—5 log{1l — r°s )) o= m;l?‘ fo s ds.

5 m k!

eyl

00 T.E!m-l

The claim follows since in the Taylor series o (r)/r = 320, ST IR all coethcients
are positive and such that for large &k, it 1s only the first termm which matters.

Likewise, the density 7¢(s) = ar(1/s)/s of the image measure of o.(r)dr/r under the
mapping r — s = 1/r also is convex on the interval (1,o0c) and assumes the form
s or(l), s > 1, for large k.

3 The reverse relation

To establish a similar expansion for the reverse relation (1.4) one may proceed in much
the same way as in the previous section. However, there are obstacles.




To be specific, let Ux(w) denote the k—-th derivative of U with respect to logw. Pro-
ceeding as in the proof of Proposition 2.1 one can show that

w [T = [ - Ulw) 2

T2 —

:Z;l Ur(w) El’- /01 ((—- log t)* — (logt)k) 1 dttQ + RY(w)

S Uw)C(k+1)2—2%) + RY(w).

k=1, £ odd

l w/t d wi d dt
Riw) = [ ([ Kbway T - [ K ) )
0

w 1 w I ].-tgi

|

where

and KV is defined as in (2.10), except that V is replaced by U.

The problem alluded to above now becomes clear. Due to the change of the “weigthing
measure” from f_‘i:g to If‘_‘tg the coefhicients in the expansion do not decrease to zero but
to the constant 2. Therefore the approximation

Vi) x -2 S Uaw) Clk +1) (2 — 275

T k=1 k odd

cannot be expected to be effective.
This problem can be overcome by starting from an alternative logarithmic Kramers—
Kronig relation, to be derived in the appendix, namely

2w = U(z) — U(0)

Viw)—wV'(0) = -— —:1—:-5_,—-(:52 ey dz. (3.1)

If we then define a function @ by Q(w) = (U(w) — U(0))/w and replace V in the last
section by @) then everything goes through in exactly the same fashion. That is, up to a

change of sign we obtain the exact analogue of Proposition 2.1 — with assumption (A4;)
instead of (A4;) — if we replace V' by @ and U(w) — U(0) on the left-hand side of (2.1)
by V(w) — wV’(0) : we then have

n—1

T , w _

§(V(w)—wV(O)) = / Q(z)dlogz — > Qe(w)((k+1)27% — R%(w). (3.2)
d k=1, k odd

Remark 3.1 Notice that the imaginary part V' of the log transfer function cannot be

recovered entirely from the real part U through (3.1), but only up to a linear function of

w. A similar remark also applies to (1.5), of course, which gives U in terms of V only

up to a constant.

4 Appendix

The validity of the logarithmic Kramers-Kronig relations can be established by means of
the tollowing lemma.




Lemma 4.1 Suppose the function F 1s analytic in C,, continuous on the closed half
plane C.., and satisfies the conditions

(C1) limpoe R [J |F(Re®)|do = 0;
(C2) iﬂ}%ﬁ%{d:s < 0.
Then for every w > 0 we have
© F(z)dzx i)
= —(F — F(—w)). 4.
PV[ 55— = (F(w) - F(-w)) (4.1)

PROOF (sketched). Let w > O be fixed. By Cauchy’s theorem, [- 5 Fladz — 0 for

? w2
the contour C consisting of the (big) semi-circle in C, around the origin with radius
R > w and the interval [—R, R}, with the proviso that the points £w are circumvented
on small semi-circles in C, with radius 7, say, as usual. Letting R tend to infinity
makes the integral along the big semi—circle vanish, by (C1). As r tends to zero the small

semi—circles contribute the amounts —mz F:(;wl, respectively, by the assumed continuity

of F on C.. Finally, consider the integral over the remaining part of C, the union of
Intervals J(Rj r)=|-R,—w-—r|U [——w +'r w—r|Uw+r R|. As R tends to infinity the
corresponding integral tends to fJ(m, | m wg, by (C2). Letting then r tend to zero makes
this last integral converge to the Cauchy principal value. Since the sum of all integrals
equals zero the lemma follows.

Corollary 4.1 Let F|, F5 denote the real and the rmagqginary part of F, F = F| +1F5.
If F| 15 even and 5 s odd (as functions on the real line) then

Pg('lb’) V I 5 (’LU > 0) (4 )
Conversely, if F1 18 odd and Fy 1s even then
/ — - |
3;'9 ” (w > 0) (4.3)

PROOQOF. This is easily proved by equating the real and imaginary parts and observing
that PV[_ 2 giz) dﬁ vanishes if ¢ 1s odd.

Corollary 4.2 The relations (1.4), (1.53), and (3.1) are valid under the assumptions (Ay),
(Ay), and (A,), respectively.

PROOF. This follows from Corollary 4.1 by suitable choices of F. In the first case, take
F{w) = log k(w) (sothat Fi(z) = U(z) is even and Fy(z) = V(z) is odd). Relation (1.5)
may be obtained by choosing F(w) = (log k(w) — log k(0))/w (so that F\(z) = (U(z) —
U(0))/z is odd and Fy(xr) = V(x)/z is even). The modification (3.1) of the relation
(1.4), finally, is obtained by choosing F(w) = (logk(w) — log k(0) — wk'(0)/k(0))/w?
(so that Fi(z) = (U(x) = U(0) — zU'(0))/z* = (U{z) — U(0))/z? is even and Fy(z) =
(V(z) = V(0) =z V'(0))/z* = (V(z) — 2 V'(0))/x? is odd).

[t remains to verify that in each case the assumptions (A4,) imply the conditions of Lemma
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4.1. Analyticity of F in C, isclear, and (C1), (C2) immediately follow from (1.6), (1.7)

and the respective definition of F. Continuity on C, 1s a consequence of the condition
Jo2t?|k(t)| dt < oo, which entails the existence and continuity of the g-th derivative of

k. and hence, since k is zero—free on C., the continuity of F on C.. This completes
the proof.
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